Hangunk is árulkodhat a súlyos lelki betegségről

Magyar fejlesztésű mesterséges intelligencia segítheti a depresszió kiszűrését, amely pusztán a beszéd elemzésével képes lehet kiszűrni ezt a sokakat érintő, komoly betegséget.

Beszédelemzésen alapuló, a depresszió felismerését segítő nyelvfüggetlen szoftvert fejlesztenek közösen a Budapesti Műszaki és Gazdaságtudományi Egyetem és a Semmelweis Egyetem szakemberei – olvasható az egyetem honlapján. A technológia elsősorban az alapellátásban segíthetné a világszerte milliókat érintő mentális betegség szűrését, időt és pénzt spórolva az egészségügynek. Az alkalmazás már elkészült, de élesítéséhez további tesztekre van szükség.

Nehéz felismerni a depressziót

A depresszió népbetegség, az Egészségügyi Világszervezet adatai szerint körülbelül 280 millió ember, a felnőtt lakosság 5 százaléka lehet érintett. Egyes előrejelzések szerint 2030-ra ez a mentális probléma róhatja a legnagyobb terhet a világ egészségügyi és gazdasági rendszereire. Diagnózisát megnehezíti, hogy sokféle tünetet válthat ki, ráadásul sokan szégyellnek orvoshoz fordulni a panaszokkal. 

„A depresszió-kutatásban éppen ezért régóta próbálnak olyan biomarkereket (objektíven mérhető jellemzők) meghatározni, melyek orvosi beavatkozás nélkül segíthetik a gyorsabb felismerést. Ilyen lehet a páciensek megváltozott beszéde, melyről mára gyakorlatilag egyetértés van a szakirodalomban” – mondja dr. Hajduska-Dér Bálint, a Semmelweis Egyetem Pszichiátriai és Pszichoterápiás Klinikájának tanérsegéde és egy, a Frontiers in Psychiatry című folyóiratban nemrég megjelent tanulmány első szerzője.

depresszió
A depresszió nem mindig jár egyértelmű, látványos tünetekkel. Fotó: Getty Images

A publikációban egy Budapesti Műszaki és Gazdaságtudományi Egyetemen (BME) fejlesztett, mesterséges intelligencia alapú beszédhangfeldolgozó alkalmazás működését analizálták, mellyel a depresszió felismerését egyszerűsítenék. „A depressziós betegek beszéde általában megváltozik: monotonabb és halkabb lesz, többször tartanak szünetet. Ezeket a jellegzetességeket tanítjuk meg a szoftvernek egy speciális módszer (Support Vector Regression) segítségével” – magyarázza dr. Kiss Gábor, a BME Távközlési és Médiainformatikai Tanszékének tudományos munkatársa.

Depressziós emberek beszédéből tanult a szoftver

A betegség felismerésére jelenleg leggyakrabban vagy az úgynevezett Beck Depression Inventory (BDI) vagy a Hamilton Rating Scale for Depression (HAMD) teszteket használják, melyek nem teljesen objektívek. A BDI teszt önkitöltős, ezért sok múlik azon, hogy maga a páciens hogyan értékeli a saját állapotát: túlozhat vagy éppen elbagatellizálhat tüneteket. Ezzel diagnosztizálni viszont gyorsabb, és nem kíván feltétlenül orvosi jelenlétet. A HAMD tesztet ezzel szemben az orvos tölti ki a beteg jelenlétében, így olyan tüneteket is megfigyelhet, amit a páciens esetleg nem tart fontosnak – de ez egy időigényesebb folyamat.

A kutatáshoz az úgynevezett Magyar Depressziós Beszéd Adatbázis 218 depressziós és egészséges embertől (144 nő, 74 férfi) származó hangmintáit használták fel. A résztvevőknek „Az északi szél és a nap” című rövid, 10-mondatos mesét kellett felolvasniuk. A szakemberek rögzítették a BDI teszten elért pontszámukat, életkorukat, nemüket, dohányzási- és gyógyszerszedési szokásaikat, illetve, hogy van-e beszédet befolyásoló betegségük. A résztvevők 20 százalékánál (43) a HAMD teszten elért pontszámukat is felvették.

A kutatók ezután különböző fizikai jellemzőket vetettek össze minden egyes beszédmintában, köztük a hangspektrumot, a hangdinamikát, a dallamváltozást vagy a beszédritmust. Az összesített eredményekből kiderült, hogy az alkalmazás 84 százalékos pontossággal szűrte ki a depressziós betegeket, ha a klinikusok által kitöltött HAMD-teszt pontszámokkal „tanították” a szoftvert, és 76 százalékos pontossággal mért, ha az önkitöltős BDI-teszt pontszámait vették figyelembe.

A szakemberek szerint a depresszió beszédhangon alapuló korai felismerésével lerövidíthető és felgyorsítható lenne a betegút. Az érintettek hamarabb juthatnának el pszichiáterhez, ha mondjuk már a háziorvosnál felmerülne, hogy a beteg esetleg depressziós, és emiatt lehetnek fizikai tünetei, például has- vagy hátfájdalma.

A legfrissebb tartalmainkért kövess minket a Google Hírekben, Facebookon, Instagramon, Viberen vagy YouTube-on!

Emlőrák: több ezer életet menthetne meg a korai felismerés

Olvasd el aktuális cikkeinket!

Orvosmeteorológia
Fronthatás: Nincs front
Maximum: +17 °C
Minimum: +5 °C

Többnyire derült idő várható, délen, délnyugaton lehet némi fátyolfelhőzet az égen. Estétől viszont ismét terjeszkedik, illetve nagy területen képződik köd, rétegfelhőzet. A délnyugati, nyugati irányú szél többnyire gyenge vagy mérsékelt marad. Késő este 6 és 13 fok közötti értékek valószínűek. Fronthatásra napközben nem kell számítani, így a frontérzékenyek tünetei nem valószínű, hogy felerősödnek.

Hogy érzed magad?

Kirobbanó formában vagy? Válaszd ki a lelki- és testi állapotodhoz illő emojit és nézd meg térképünkön, hogy mások hogy érzik magukat!


Hogy érzed most magad fizikailag?

Hogy érzed magad?

Kirobbanó formában vagy? Válaszd ki a lelki- és testi állapotodhoz illő emojit és nézd meg térképünkön, hogy mások hogy érzik magukat!


Milyen most a lelkiállapotod?

Hogy érzed magad?

Legjobban:
Legrosszabbul:
Kezdjük újra